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Stereoselective Conjugate Addition of Propionate Ti Ate Enolate to 
Unsaturated Chiral Ketones: a New Insight in the Reaction Mechanism 
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We ncently qorted that Ti “ate” complexes of ketone and ester cnolatcs. obtain& by treating tbc 

axresponding Li cnolates with 1 mol a@ of Ti(OiPr)g, acid to unsacur8ad carbonyl compounds in a 1.4 

fashion with high rcgi~ and stereose lectivity and offer various advantages in comparison with their Li 

counterparts.t For ketone enolates. the use of the Ti complexes improves both the ngioselcctivity and tbc 

suraiselectivity of the coqjugate addition. The sense of selectivity is the same as for Li (i.e. when adding toE 

CW. E enolates afford syn canpounds, andZenolatcslheMtj isanas).~OnthecOntray,fC!SC!4tWWlatCS 

the stuwchcmicaloutcumcofthcadditionismuscdongoingfmm LitolI.RxinstancGtbc~coolatcof 

t-butylpmpionate 1 adds m E-amfim estus and ketones to give nnri km with smeoselaA~ up 

to 95%. while the addition of the parent Li enolatc 2 is 90-95% Syn selective (Figure 1).3 

Figure 1. Addition of ester eaolates 1 and 2 to unsaturated ketones. 

Lnthispapawerepatonthereactionofestaenolattsland2withthechiralsubsaPte3,wh3chkdto 

a dqer undastonding of the StatodivQgent behavior of the two enolates. 

Enonc 3 was synthcsizcd from Zphcnylpmpanal, as pnviously reportaL Addition of the lithium 

awlate 2 (Figure 2) at 0 Oc afforded a mixture of ketoesters. with the 23-syn-3&unfi iJoma 4 constituting 

ca. the 809b of the product mixture.~ TSe same isomer was obtained by Heathcock and Uehliig in the IiQ 

catalyzd rCllCtiOn of 3 with the t-butyldim&yl silyu of t-butylpqialate.6 
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Figure 2. Addition of the lithium endate 2 to 3. 
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On the contrary. reaction between 3 and the Ti enolatc 1 at -30 Oc (Figure 3). followed by NH,@ 

quaxhing, rcsultai in the formation of a ca. 51 mixture’ of the two cnols 6 and 7, in quantitative yickL Tbcsc 

enols were characterized by ‘H- and ‘3C-NMR of the crude reaction mixture.~They appear to be stabilized by 

H-bonding huwccn the en01 and the ester carhoxy group (see Figure 3). which is xcvcalcd in the IR spaznm~ 

bythelowfraq~ofthecarbonylstretching(l715cm-1),andinthe*H-NMRspectnrmbythe~of 
a D@ exchangeable proton as a sharp singlet at 6.6 ppm. Transformation in a 5~1 mixture of kemcstus 5 and 

d takes place spontaneously in a few hours. However, the cnols could he napped by eeating the zcxxion crude 

with tosylisocyattat~.~~The testthing N-sulfonylamides 8 (Figure 3) could be cluwtrrtooRpbed on silica gel. 
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Figure 3. Addition of the titanium cnolate 1 to 3. 

The 2,3_an&3,4_ann’ configuration of the major ketoesta 5 was established by X-ray analysis of the 

corresponding acid 9 obtained in isomcricaUy pure form by trmoval of the t-butylcstcr with CpJCOzH, and 

~tallization From pcntane (Figure 4). 12 



6359 

5 
TFA 

- Ph 

Figure 4. Synthesis and X-ray structum of kctoxid 9. 

Theformatioaofthecnols6md7intheTimcdiated~ction,asopposcdtothedinctf~arof 

ketoeseasintheLimdiated~~~beexplrinediftheMctionbetweur3endthe~aroktel~ 

place &tough a cycloadditive mechanism, rather than a nucleophilic addition to the activated double bond 

[4+21 Hetcro-cycloaddidons arc known to occur between tnones and elcctromich dienophilcs such as 

enolethers and kcancacctals.*3 These cyclondditions (the socalled inverse demand Diels-Alda mactions) take 

place thermally or under kiwis acid catalysis and, starting tnwn ketcnc acctals, give rise to 2,2dialkoxy- 

dihydropyranes.t3r*t4 Thus. cycloaddition of 1 and 3 followed by water quenching should afford the 

hemiorthoestcrs 10 and 11 (Figure 5). Breakdown of these intermediates is expected to occur mainly by 

opening of the ring and ~tlcnsc of the enol form. tsf* ts At present we do not know whetha the mechanism 

thatlexispathefamationof6and7isconcezM as for enoletbus,l3 or stepwise ps for enaminer~* Fmm 

a stereochemical point of view, we can observe that, assuming a concerted mechanism and that the 

stcrcochcmisny of 1 is E? the selective formation of 5 over 4 can be explained with the models of Figure 5. 

23-anti -3,4-anti 

Me 

L 11 J 2$-syn - 3.4-a& 
Figure 5. Reposed mechanism for the addition of 1 to 3. 

Saucturcs a and b show the approach of the enolatc to the face of 3 predicted by the Felkin modcl.t6 

Both a and b allow the favorable interaction between the cnolate oxygen and the carbonyl carbon which 

generally leads to en& selectivity in these type of cycloadditioms. t3a Saucturc b should he disfavored by the 

steric hindrance created by the metal ligands in the endo caic11tati0n.t~ 
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More generally, the isolation of 6 and 7 sheds some light on the smhemical divagence of lithium 

and titanium cstar cnolatcs. The reaction of lithium cnolatcs is a mal nuclcophilic addition to tbc activated 

double bond and takes place through eight-membered cyclic transition struchms. which dictate the 

SXClWherniCd outamc.3~17On thcamt7ay,thetirioaofthetitanlum~1iran invasGdemand[4+21 

cycloaddition, pluxabg with end0 sckctivity. 
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